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NEUTRON DIFFUSION IN A SPACE LATTICE OF FISSIONABLE

AND ABSORBING MATERIALS.
%.

-

In experiments with ocritiscal assemblies it is often convenient to
fabricate active material, tamper material and absorbing material, such as
ron, in the form of blocks or slabs and then to assemble these blocks or
#labs in the form of some regular space lattice. From the point of view of a
thaorastical treatment it would, of course, be preferable if the assemdbly were
oomposed of a homogeneous core and a homogeneous tamper. If the dimensions of
a unit cell of the lattice are small compared with a neutron mean free path the
asssmbly may be considered as practically homogeneoué and so treated. It ia
the purpose of this report to develop methods for deciding how big the lattice
size can be before a serious departure from homogeneity is introduced.
We propose to discuss the following idealized case in s oms detail.
Suppose we have an infinite medium in whish fission, elastic scattering and
absorption can ocour. Suppose that neutrons of only one vslocity are present
in the system and that the neutron mean free path is independent of position,
it being equal to unity with the unit of length used. We then assume that f(x),
the average number of extra neutrons emitted per collision, is a function of
position which varies periodically throughout the medium. Specifically, 1+-f(§)
will have the form:
1+ e(x) = 2@
= A (1)
The function p(x) is assumed to have a space average value of unity so that 1/
15 the space average of the total number of nsutrons emitted on the average

per collision. We define a unit cell of the lattice by three vectors, a, b, and
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s and make the statement of periodicity, thet:
#(x +1la tmb tne) = u (x) (2)

where 1,m,n, are integers. With these assumptions we can then write the fole

lawing integral equation for the neutron density )V(i):

-‘x -x‘l
— -

AV = (/Y e’ 2 5 () P (3)

If R is any displacement which keeps the valus of p (Ji) unshanged

then we can rewrite Eq. (%) as:
-1z <R - =z

7k ) Y (W

l

Kol

*R-x

» Ylx+R) = (1/hn)/d£' .

1 we now displace the origin of x by an amount R and use the periodicity of u,

ws can rewrite Eq. (L) in the following way:

- - " .
2 Y(x+B) = (1/Ln) | ax® °’.‘£ Elg b (x') Y(x'+R) (s)
X - x* .

!
Comparing Egs. (3) and (5) we see that if Y¥{(x) is a solution of the integral
equation, Y(x +R) will also be a solution.

If, as is usual in the theory of metals, we properly chsose the elemen-

tary solutions of the integral equatiocn (3), it will be true that for soms ki

_ 1k °*R
Vix+R= o= = Y (2 (6)

UNCLASSIFIED

where dk (x+R) = & (x) (n

Printed on DIETZGEN #198M ""AGEPROOF’ tracing paper

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

‘°” UNCLASSIFIED

A general solution of the integral equation can of course be built up by super«
posing solutions of the form (7). .

The voctor k is of course analagous to the wave number of the ssymptoe
tic infinite medium solution of the integra) equation (3) in the elementary case
where (ﬁ) is constant. 1In that case ﬁk (x) is of coursc constant also. We
shall find it convenient to deal directly with the pericdic function dk rether
than with the reutron density itself. Toa cccmplish this we substitute Eq. (7)

ir. Eqe (3) and cbtain:

- x'l
de)JE’-umﬂfu'TAL—%ﬁ-pgw.*“ g (x") (8)

which Lis converiently rewritten:
x|

, -lz-x '
AB () = A farr TEZEN Sk - 0w d@ (9)

(z-%

This equaticn is seen to be an intuvgral emuation for the functicn ¢k (E), the
kernel of the integral equaiion contiraing the oversll wave-vector of the soluticn
explicitly and being Eernmitian, if the propagation vector k 1z reals

In order to illustrate the general method of procedure, and for use in
investigating the approximats methods to be develcped, we will solve a simple
problem exuctly. We assume for p(x) the following: |

B (x) =1+a cos (2nx/a) =1 t (a/2) 02“”‘/“1" (a/2) O-Q“u/a (10)

It is aleo convenient, but not essential, toassume k = oe We then wish to find
the velue ¢f A required for criticality as a funotion of a and of &. As usual

in a plane problem, we simplify the irtegral equation to the following:

P *-\_(11)
S\:‘;"ﬂn.ﬁ

2 B(x) = (1/2) J dx' E(fx-xtl ) w(x*") £ (xv)

LLICICr
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We now expanid # (x) in a Fourior series and obtain:

@

6y S g OZﬂinx/a (12)

T -

We substitute the expression (12) in the Eqe (11) and obtain:

20
n /s , oni '
‘)\Zﬂ a2 inX/a=Z¢n ‘.l/?)/dx' E(jx = x' ) e nx'/a
n n " n -0

” n 1/
+ (a/2) 2 dn (]/’2)[ ax' E(lx - x) °2 i(n+l) x'/a
n =20

+ (a/2) J dn(l/IQ)f dx' E(Ix -x¥) 02“1(0-])1'/l (1%)
n ~00

The integrals appearing in Eq. (13) can easily be done and we obtain, by shifting

the summation index n:

eny x/ . : n
5 wn . n a ‘% )‘n E;n? (a/2) dn-lf (a/2) ﬁnq} <™ 1 x/a ‘(lb,)

where ;
tan-l E‘ﬂn/a.
2wn/a (15)

S

From Eq. (1) we finally get the following recursion relations for the ¢nx

A dn = [dn + (a/2) ﬁfn_lf (a/2) ﬁn*l] {16)

If two of the neighboring dn are specified it ia clear that we ocan solve

for e11 of the # . In general, as the magnitude of n gets very large ﬂn will
n

increase without limit. If the value of A\ i& properly chosen, howsver, then ‘n
will converge to zero. Since the Q'n are the Fourler co-efficients of a amcoth
funstion #(x) the § must converge to zero for large n if we are to have a real

n
solution of the integral equation. We can therefore proceed by assuming that ﬁn
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ig zero for sufficiently large n and determining A from this requirement.

We notice that Ege. (16) is unchanged by the substitution of -n for n,
and we can therefore argue that the sclutions of (16) must be either even or
cdd in ne The odd solution can be ruled out because it would require that ﬁo
be zero, which implies that the neutron density averages to zerc. We there-
fore lose nothing by assuming that dn is equal to d—n' Considerstion of Eq.

(18 with n set equal to zero ylelds the conditions
B = "odo*""o‘&
or (\ - Xo) ﬁfo = a %, 951

/B, = (A=) Jar (17)

We then write the remsining equations (16) ir t he following forn:

\
s b L g1 T
X - \] o k - k ? 2
1
A a )‘2 a
= + [
2 NN e ﬂ'l VY 2 3
2 2
e (18)
For convenience we abbreviate the co-efficients as follows:
= +
2‘1 N 60 b1 E‘z
= b
ﬂe n.? b’l bi.’ !53
Otco (19)
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Ro equals unity.
We rcw sclve these equations for Rl by assuming that all the ﬂn Pe-
yond a certain point are equal to zeroc and then taking into acoccunt more and

more of the £ . If we first decide to neglect R, and a1l R_beyond, we obtain:
Rl = a (20)

If we now neglect all R except R1 and R_ we clearly obtain:’

2

Rl = nl*' bl R2
R2 = 12 R1
whence:
R = + t R 2
1M T L5 (21)
or R=a /(Qaa b
1 1 ( 2 1)

It is then easily seen that inclusion of higher and higher R will give values
n

for Rl that are succesaive approximations to the value of the continued frasction:

Ry T &

1-‘2b1

l-ath

4

(22)

s Sre..  eowsasre

We now ingert the values which we have for ‘n and b and set the
n

resulting continued frection equal to the value of R1 given in Eqe (17)+ We

thus obtain the following seculsr equation for X:

~.\_:.; —

,
)

”illfj
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1 2R
T 2
1 -4 o 23
e % D Y
2 3
(23)
Thiv may conveniently be rewirtten in the more symmetrical form
1 ‘ a2 2o xl
T h
A - ko A - Xl
2
A — 1
1.2 N 2 5 (2L
L xl p 12

For a given value of the kn are determined. If the value of a is then
given 5 can be found by & small amount of trial and error. The continued frace
ticn in Eq. (2L) fortunately converges exceedingly rapidly for reasonatle values
of a end a.

We should make sure that the Eq. (2L) gives ) correctly in the limit
a =0 or s =0. If either a or a approaches zerc the medium approaches homo-
geneity and A should approach unity. If a is very small Xo will be equal to

upity and all the higher A will be zero. Equation (2L) then reduces to:

A =1 +(a2/2) xl/(x - xl) (25)

From this we see that )\ apprcaches unity as 8 apprcaches zero. It is furthere

-
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more clear that if a apprcaches gzero, Eqe (25) will again hold and A must again
approach unity so that we have verified that Eq. (2L) has the correct limiting
behavicr,

We now wish tc work out an approximste procedure for ocaloulating ),
whick will be reasonably aéoumte and éimple for an arbitrary function u(_x_) « If
the wave veotor k is real, Eq. (9) can be arranged to have a Hermitian kernel.

We multiply each side of Bg. (9) by \]u (_x_) and rewrite it as follows:

p.
Mk (D =/ ey 2 D) Gt e G

(26)
This squation can be derived from a simple variationsl principle and )\ can be

written s the maximum of the following expression:
. : " -2 - X gka(xt-
fax [axt 809 k(x) (/L) -2 SMEED ) ww)
e |2 - %1 = = (27)

fax 2¥ @ 4 @ w@

The maximuwwill be reached when ﬁk is anactusl solution of Egq. (9). If the
veriation of "‘(f.) is not too violent, ﬂk (x}) will be approxinately constante.
We, therefore, place, ﬂk(i) and ﬁ{(y equal to unity and investigate the agrease
ment between the value of U thus obtained and the correct value of X. It is,

of oourse, olear that the value of U thus obtained will always be lower than the‘

correct value of X« We write A\ for this approximate value and obtuing

. , «-}X - _X_" ik (x* X)
dx Jax' (1 S = ==
5 = ‘( .x.} ~ ( /hﬂ) W (]

faz vt

p(x) w(x') (28)

Each integral in Eq. (28) is taken over all space. The result of the integra.

eriodigit

tion over x' in t he numerator will be a function periodiec with the

IFEERITS
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of the lattice. Yhe integration over x in the numerator anc dencminator can

then be extended over a unit cell of the lattice.

In order to obtain the expression (28) for M in a somewhat more usable

form, we expand i (Xx) in a Fourier series:
iK.x .
p(x)= 3 pe == (29)
The 5_ t‘orm.a denumerable sest and are of ths form:

K =21 (patq Arry ) (30)

Here p, qy r, are integers and a, é, Yy are the defining vectors of a lattice in
K spaces This new lattice is reciprocal to the lattice defined by 8, b, ¢, In

the x space in the following sense:
geb=a.e=0 g.8 =1 (31)

and cyclically for/9_, Y+ Tho concitions (31) are obviously satisfied by the

cnoice:

ard similarly for B, and y. Any K satisfying Eq. (30) has the proparty t hat:

Ko+ (latmb tne) =27 x (an integer) (3%
Therefore, every term in the expaunsion {29) is periodiz with a periodicity which
18 that of p (_15).
We now insert the sexpansion (29) in the Eq. (28) for . It is necos-

gary to reaember that:

I

il

Printed on DIETZGEN #198M “"AGEPROOF” tracing pAo

PPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

-12e
-l - xt .
(Y™ fdx' ° \Z - X o ikex' _ _tan 1 I_lﬁl
X ~3 =
lx - x| , |k |

and also that u;=p ¥ since p(:_t_) is reals We obtain:
tan=1 | K'+k |

\ d Z Z x -1&.:-{- -iE.i e o i-K.' o.x_ i&.-}_
- R St [ K vk | (35)
fax w ()

Wo oall the volume of the unit cell V and remember that the average of p (x)

is unity. Also we have:

f“i(li"z(') *Z ax -0

X kK # K
- v X < K (36
Bquation (3%) then becomes :
-1
Ne Sz oy ow B IREL
koK AR N ‘r g
v
-1
or A= Ziyl? 1Kkl
X |K +k | (37)

Siace the average of p.(_x_) is unity, “o is also equal to umity. We can then

write (37} as:

2 tan lEek|
|E* k| (28)

The quantity X 'is, therefore equal to the value whish it would have for
Foato

il -y

barr/
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8

howmagensous system plus Q positive corrsction, due to the inhomogenity. This
says, in other words, that 1/(1 t+ f) is greater for criticelity in the inhomo-
Zenacus case, or that 1+ f is less, which implies that making the material
nen-~uniform increases its astivity. It can be sesn in the following way that
this statement is correct. Consider a homogeneous mixture of fissionabdle and
absorbing materials combined in such proportions that the mixture neithor abd-
sorbs nor reproduces. If we take the sume materials in the same proportions,
but in the form of an inhomogeneous lattize rather than a mixture, we can make
the size of a singls pioce of the fissionable material such that this piece will
be super-oritical. This 1s, of course, an extreme case. The slightest distura
banse of the homogonity will increase the activity of the system. This will be
8o since in tho homogensous arrangement the absorption of one neutron ylelds one
neutron on the average. In any inhomogsneons arrangement the neutron d ensity
would ba higher in the places rich in fissionable materisl than in the absorbing
regions. This means that a larger fruction of neutrons will be abasorbed in
fission than previously and ths systsm will be supersritisal.

Tha expression (38) gives a value of X. whizh is too low. Therafore
the sorrection to the homogeneous value of \ is certainly positive but some.
what largsr than gi{en by Eqs (38;.

The exproshion (38) is convegiant but hag, thus far, no rigorous foundu=
tion if k is not real. We proceed t?-derive'this equation in such a way that the
restriction to real values of E.cén‘be re;oved. We can write equation (9) as

follows :

|1X - i’]

\ . e
g (- (/0 faxr =—== dix)  (39)

o 1k (X' - 1) u (x1)
A

We also write the integral equation for g in the oase where ths vector k has the
n A -

Y
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opposite direstion to that in Eq. (39) and p{x) 1s equal to unity. We write
ﬂ’ﬂo and X=X, and obtain:

g (X) - (l/bn) J_dx' 0- | X - f_’[ o-iE. (i'-)_x_) (I/X ) “ (x.) (ho)
0y Sems L 2 0o 0o - ]

We multiply Eq. (39) by (1/A) £ (x) and Eq. (LO) by L #(x) and inte-
0 \ -
grats over x. o intershange the dummy variables x and x' in the integrations

on the right hand side of the first expression and note that the right hand sides

of the two expressions are now equal. We therefore obtain the exact squation:

fdzs[ — - “:’szso(yﬂ(g_):o (L)

The funotioan do (x) is really constant and can be taken equal to unity. We

obtain:

Jax v (0 8 (»)
(o]
jax # (x) (2)

This gives a simple expression for A\, except that an exact expression for # (x)
3

is necessary. We prosesed by approximating £ (x) by a mathod of iteration. We
tnsert & constant for # (x) on the right hand side of Eq. (39) and take the

result as an improved expression for # (x). This gives:

Lo

; -lx - ' x?
#(x) = (1/43 | ax: \°~ ;2 SN LR VN (13)
. X o x'

We then inserf the Forier expﬁnsi’on (29) for u(x) and do the indiosated inte-

grations. This yields:
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|k + K| (LL)

We than insert this in Eg. (42), together with the Fourier expansion (29) for

p (x)+ This ylelds:

« -1 -
A { prv tan lEle jdf. 61 (l(.-.l.(.') - X

\e_°k ¥ TEFET (Ls)
-1y K
%‘(“K tan l='__[ fdx e‘lli'?-
e + k| 7

If the integrationsare then extended over a unit ce)) with V equal to the

volums of the sell, we obtain:

-1
* tan lE + E.l
-1
tan |k + K|
P vy
[k + K| K,0

- 2 tan~l |k *k|
= A gh\ T _l-

° L | (L6

Remembering that x = 23 1X1%, 14 b =1, we finslly obtain:
[o} \k '

= Z e f e Ik * |
k K -
[k + K| (L7

This equation 1s formally identical with Eq. (37) but there is now no restrice

—————
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tion to resl valuss of k . If k is imaginary, howevér, it is not clear that ths
trus X 1s higher than that given by Eq. (L7). If the accuracy of Eq. (47) 1s
good for real k, however, we would expect it to bs good for lmaginary k.
Suppose we assume k=4 h where h is a real veotor. In Eq. (L7 “(_*5] mesans

the square root of the scalar produst of the vector with 1tself, not with its

complex conjugate. Remembering this, we obtsin:

A< Z(pxﬁ tan-) Niih *B) . (in+K)
) \i(ib_fl_t_) . (1h + K

-5 tan-! 1\(h - 1K) o (n -1K)

' t {(n - 1K) . (h - 1K) R

2 tann {(n-1K . (h-ik)
J(2-30 - (-1 (3

This sum ies obviously real since ’;K = by It can be written:

tanh* fh|, s ,? tanh~! \Rﬁ-ig) o(h-iK) tann~? \J(max).(mm
A = Dt 2 g (1/2) A e~ okt A neils h+iE)
b | E#e {(h-3K) - (2-1K) J(hriK) < (nriK)
(i inl s 2 g i {(n w102
{hi| KroO I 2
" Jin +11) (L)

In Eq» (L9), R {w} means the real part of we The princpal bransh of the function
tanh=! 7 is always required.

We now wish to check ths gccuracy of Bq« (L7) by cémpar;ng ths valus of
% caloulated by the exact Eqe (2L) with the approximete value of X. We assume,
s wé did in the derivation of Eq. (2i) that k is equal to zero. The symbols

ased in Eqe (47) now are specialized to the following:

Printed on DIETZGEN 2198M *"AGEPROOF’ tracing paper

APPROVED FOR PUBLI C RELEASE



APPROVED FOR PUBLI C RELEASE

wl7= s\.\:\\""‘::
2ni - BEERSSSSS
p(x) = 1ta cos (27x/a) =1 +(a/2) o l x/a*‘(cx/2) e 2nix/a
VD |
)
b = af2 [k, [ = 2/a
by = a/2 [k =2%/a
“K = 0 otharwise i (50)
Equation (L7) therefore yields:
> 01 (2"/&)
A-1 + 2 (a%/l) ZYan =1 + (a%/2) A (51)
21/a 1

If we assums (a2/h) [Al /(- )\1)] /(N - 12) << 1 ' in Bq. (24) we

ovtain:
x= 1+ (/2 A/ - ) (52)

In this equation X\ will be nearly unity, and if we assume that )\1 is much less

than unity we obtaln:

A o= 1 +(a2/2) N (53)

which agrees with (49)+ The validity of these approximations can be sean from
ths following examplese We write A = 1 T AN and calculate AX for various values
of & and 2 by equation (47) (or equation (51) for this special case) and by the
exaot equation (24). We also give (AX)/ue), which is indepsndent of a in the ap-
proximtion leading to equation (L7}, and may be expscted to be nearly independent

nf a in reasonable cases with the use of the exact equation {24).

ke 4
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AX AN a a Ax/ae AX/02
Equ.(2L) Equ. (47) Equ.(24) Equ. (L7)
04200500 0,000,914 0.1 0.2 0.0125 0.0124
0.00316 0.00310 0.1 0.5 ‘00125 0.0124
0.0125 0.0124 0.1 1.0 0.0125 0.012L
000270 0.00237 0.5 0.2 0.067= 0.0593
0.0165 0.0148 0.5 0.5 0.0660 0.0593%
0.0629 0.9593 0.5 1.0 0.0629 0.059%
0.00576 0.00450 1.0 0.2 0.14L 0.112
0.0348 0.0281 1.0 0.5 0.139 0.112
0.126 0.112 1.0 1.0 0.126 0.112

-~

It is to.be noticed that the approximate AX is always less than the exact
8x, as expected. For a lattice with periodic lengih oconsiderably lese than a mean
free path (a = 04)), ¢ (x) can oscillate between zero and two (a =1.0) without
intreducirg any 2ppreciable error in the approximate value of A\s The approxie
ma@e form gives & good idea of the size of the sffect even when the periodic
length becomes a mean free paths

It might be expected that if u(x) departs little from unity and has s
short perlodic length, e first-orde® perturbation calculation of A should suffice.
This ie not true and, in fact, several different values for ) can be obtaired by
doing the perturbation calculsticn in several seemingly equivelent ways. It seoms,
in fact, that the calcuwlation is essentially seoond order ;nd this can be seen
from the following considerations.

Jo write the equation whose kernel is sdjoint

to that of equaticn (9):

]iﬁgi
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We conaicer first a case with p (x) equal to unity (the unperturbed case) and
then change w(x) to 1t 4 p(x). The eigenvalue will change to X+ A\ where AN\

is given by the usuel first order perturbation calculetion:

Iz =l olk+ (x°-x)

fdx fdx( E‘ (X) (l/h") —-——.-—x-qz- (x') 'dk(x (55)
fax £ 0 4, @

We usa Eq. (54) to do one integration and obtain:
[

Ao 5w 4 @ e
fax £, @ 4 @ (36)

Ak =

We insert for £, end @ the unperturted & and @ which are constants, anc we
k K P k x

obtairn:

/]
o

(57)

The result of the firstecrder perturbation calculation is, therefore, that the
eigenvalue is unchanged. We must then go, either to a second order caleulsticn or
uge one of the treatments vhich have been given. It should be pcinted out that
the first order celculatiocn will give correct answers in problems where Ay is not
gssumed teo be zero cn the average. It is only in cases where no change is mace

in the totsl amount of active wmaterisl that a second order calculation may be
nocesssfy.

The tresatment which we have develcped is certainly not capeble of giving
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tre critical mssof a lattice assembly. It does eratle us to estimate the
approximeste effect of the inhomogenity. e can state some obvicusly necessary
and cbvicusly sufficient conditicne thst a given assembly be essentially home-
genscuse. We require that fcr the glven A of the core or tamper that the propogRe
tion vectore of the infinite medium plane wave sclutions should have megnitudes
which are eszentially indepercent of direotion. We further require that this mag-
nitude shsll bs different from that for the corresponding homogeneous medium by
only a small frection of itself. We can further argue that the effect on the
oritical size produced by the inhomogenity will be of the order of magnitude of the
effect on the magnitude of the veotcr ko

If the irhomogeneities are not too large sxscellent apprcximstions to
the criticel nass of an inhomogerscus corws can be obtained by replacing the core
by an "equivelent" homogeneous one. The "equivalence" being determined by makirg
the homogeneous meterial such that an infinite medium of it would have the ssme
A for the important K velues as does an infinite medium of inhomogeneous material
as developod by the methods of this report,

Inhomogeneities of mean free path present problems which have not
been golved. Inhomcgeneities in a system in which many neutron velcocities are
invoulved present interesting problems which have only been partly sclved in some

especislly slmple cases.
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